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Simple (bivariate) linear regression

When we want to describe a relationship between two numerical
variables we usually use regression analysis (name explained later).
The data consist of pairs of observations (xi ,yi), where xi are values of
variable X and yi are values of variable Y .

This is the standard terminology

X = independent variable (prognostic variable, covariate, . . . )
Y = dependent variable (outcome)
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Scattergram (or scatterplot)

It is always a good idea to plot the points.

Example: In a treadmill test 50 men were asked to run until
exhaustion and the duration of the test and the oxygen consumption
(per minute and kilogram body weight) were measured. On a
scattergram on the next slide we see that oxygen consumption
increases with duration approximately linearly.
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Scattergram (or scatterplot)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

500 600 700 800 900 1000

20
30

40
50

60
70

duration

ox
yg

en
 c

on
su

m
pt

io
n

Stare (SLO) Linear Regression 4 / 49



Goals of statistical analysis

1 Describe and evaluate association between the variables.
2 Predict Y , if we know X .

Since we will discuss only linear associations, we will talk about linear
regression (and still wonder why we say regression).

Statistical model for association is then

Y = α + βX + ε,

where ‘the error’ ε represents random variation around the line.

Note: Limiting ourselves to linear model is not really a restriction!
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How Regression Got Its Name

Sir Francis Galton
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Assumptions

We will require that the observations are independent and errors are
normally distributed with mean 0 and a given variance, so

ε ∼ N (0, σ2).

Putting it differently, our model assumes that for a given x the outcome
Y is normally distributed with (conditional) mean

E(Y |x) = α + βx

and (conditional) variance

Var(Y |x) = σ2.
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Assumptions cont.

Since the variance does NOT depend on x , we are actually assuming
that the variability around the line is the same everywhere. This
property is called homoscedasticity. If the condition is not satisfied,
we talk about heteroscedasticity.
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Assumptions summary

Our statistical model has four assumptions. Here they are again:

1 Observations are independent.
2 The regression function E(Y |x) is linear.
3 The values of Y vary around the line with a constant variance

(homoscedasticity).
4 The values of Y for a given x are normally distributed.

The appropriatness of these assumptions should always be checked.
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Estimation of parameters

Linear regression model has three unknown parameters: the constant
α, the coefficient β and the variance σ2. Our first goal after collecting
the data is to estimate the regression line, and here we have the
following question:

How do we choose α and β, which line is the best?
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Estimation of parameters - criterium

There are different criteria for the ‘best’ line, the most common is this
one:

For all values of x we look at the differences between the predicted
(lying on the line) and observed values of Y , and we require that the
sum of squares of those differences be minimal.
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Estimation of parameters - criterium

We then have to minimize the sum

SS(α,β) =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − α− βxi)
2.

Here SS stands for sum-of-squares.
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Estimation of parameters - criterium illustration
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Maximum likelihood estimation

Under our assumptions, the density of Y for a given value x is

f (y ,x) =
1√
2πσ

exp(−1
2

(y − α− βx)2

σ2 )

The likelihood of given data is then

L(α,β) =
1√
2πσ

n∏
i=1

exp(−1
2

(yi − α− βxi)
2

σ2 )

We see that maximizing ln L is the same as minimizing∑n
i=1(yi − α− βxi)

2
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Estimates

We need to minimize a function of two variables (α and β), which is
easily done if we know enough mathematics. We get:

β̂ =

∑
i [(xi − x̄) · (yi − ȳ)]∑

i(xi − x̄)2

and
α̂ = ȳ − β̂x̄ .

The estimated line is

y = α̂ + β̂x = ȳ + β̂(x − x̄),

from where we see that the line passes through the point (x̄ ,ȳ).
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Estimation of the variance σ2

The observed values yi vary around ŷi , the differences

ri = yi − ŷi

are called the residuals. These are in fact estimated errors. The
variance of the residuals is estimated by

σ̂2 =

∑
i(yi − ŷi)

2

n − 2
=

SSRes

n − 2
,

where SSRes denotes the sum of squared residuals. This is of course
the same as the sum that we minimized above to obtain α̂ and β̂,
except that we did not speak of residuals then.
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Estimation of the variance σ2 - why division by n − 2?

Formally we can say that this way the estimator is unbiased (and we
can even prove it).

Intuition: if we only have two points, the regression line will go through
them and no estimation of variance will be possible. We therefore need
more points and only those can be used to estimate the variance (not
quite true, but I hope you get the point).

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

y

Stare (SLO) Linear Regression 18 / 49



A look at the residuals

ri = yi − ŷi = yi − α̂− β̂xi = yi − ȳ + β̂x̄ − β̂xi

= (yi − ȳ)− β̂(xi − x̄)

Taking squares

(yi − ŷi)
2 = (yi − ȳ)2 + β̂2(xi − x̄)2 − 2β̂(xi − x̄)(yi − ȳ)

= (yi − ȳ)2 + β̂(xi − x̄)[β̂xi − β̂x̄ − 2yi + 2ȳ ]

= (yi − ȳ)2 + β̂(xi − x̄)[β̂xi − β̂x̄ − 2(ȳ − β̂x̄ + β̂xi) + 2ȳ ]

= (yi − ȳ)2 − β̂2(xi − x̄)2
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Example: fit to treadmill test data

Applying the formulas for α̂, β̂ and σ̂ to data on treadmill test, we get

α̂ = 1,765, β̂ = 0,057, σ̂ = 5,348.

We can calculate the estimated values ŷi for given xi using the
equation

ŷi = 1,765 + 0,057 · xi .
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Example: graph of the fit to treadmill test data
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Interpretation

1 α is of course the value on the line when x (duration in our case)
is equal to 0. Such values rarely make sense which is why α is
usually not very interesting. But we need it to calculate y for a
given x .

2 The coefficient β is much more important. Let’s calculate the
estimated ŷs for two x values which are 1 unit apart.

ŷ(x) = α + β · x

ŷ(x + 1) = α + β · (x + 1) = ŷ(x) + β

So
ŷ(x + 1)− ŷ(x) = β.
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Interpretation cont.

3 In our example X (duration) is measured in seconds so that β
represents a change in oxygen consumption (Y ) when the
duration changes for one second. It is not surprising that β is
small. It would make more sense if we knew what is the increase
in Y if duration increases for a minute. We get
60 · β = 3,45 ml/kg/min.

4 The standard deviation σ describes variability around the
regression line. Since we assumed the normal distribution, we can
calculate that in our example 95% of all the values of the oxygen
consumption falls in the interval (−1,96 · 5,348,1,96 · 5,348)
(−10,48,10,48) ml/kg/min around the line.
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Checking assumptions of the model

1 If the model is correct the residuals should be symmetrically
distributed around the regression line with a constant
variance. The graph of residuals ri with respect to the predicted
values ŷi should reflect this.

2 The normality of residuals can be checked in different ways, Q-Q
plots are one option.

Stare (SLO) Linear Regression 24 / 49



Graph of the residuals
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Q-Q plot
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Nonlinear association
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Nonlinear association - graph of the residuals
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Heteroscedasticity
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Heteroscedasticity - graph of the residuals
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Sampling error of the regression coefficient

Different samples will give us different estimates of the regression
coefficient and we must ask how they vary. We are especially
interested in the slope which tells us if there is any association
between X and Y .

Remember that
β̂ =

∑
i [(xi − x̄) · (yi − ȳ)]∑

i(xi − x̄)2

The numerator can be rewritten like this∑
i

(xi − x̄)(yi − ȳ) =
∑

i

yi(xi − x̄)− ȳ
∑

i

(xi − x̄) =
∑

i

yi(xi − x̄),

since
∑

i(xi − x̄) = 0.
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Sampling error of the regression coefficient

Now assume that sampling is repeated with xi fixed, so that only
values of Y randomly. Then we have

var(β̂) = var
[∑

i Y (xi − x̄)∑
i(xi − x̄)2

]
=

∑
i(xi − x̄)2var(Y )[∑

i(xi − x̄)2
]2

=
var(Y )∑
i(xi − x̄)2 =

σ2∑
i(xi − x̄)2 .

Under the assumptions of the distribution of the residuals we then have

β̂ ∼ N
(
β,

σ2∑
i(xi − x̄)2

)
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Testing the hypothesis about the regression line

To calculate the variance of β̂ from the previous formula, we need to
know σ. And since we usually don’t, we replace by the estimate σ̂.
This changes the distribution of β̂ from the normal into t with n − 2
degress of freedom. Test of the hypothesis

H0 : β = β0

is then

tβ=β0 =
β̂ − β0√
var(β̂)

, sp = n − 2.

By far the most often tested hypothesis is that β = 0.
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Example cont.: fit to treadmill test data

For the null hypothesis H0 : β = 0 we get t = 11,593 with 48 degrees
of freedom, p value is 1,613 · 10−16. The null hypothesis is easily
rejected.
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Decomposition of the total variation

Say we measured the outcome Y and the covariate X on n units. Total
variation of the outcome can be described by the sum

SStot =
∑

i

(yi − ȳ)2,

where SS stands for (Sum of Squares). This sum represents variation
due to biological diversity as well as due to different values of X .
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Decomposition of the total variation

The question is:

What proportion of the total variation of Y is due to variation of X?

Or

How much of a variation we would see if all units had the same values
of X?
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Decomposition of the total variation

We already know∑
i

(yi − ŷi)
2 =

∑
i

(yi − ȳ)2 − β̂2
∑

i

(xi − x̄)2

or, after rewriting∑
i

(yi − ȳ)2 =
∑

i

(yi − ŷi)
2 +

∑
i

(β̂xi − β̂x̄)2.

And since
ŷi = β̂xi + α̂

and
ȳ = β̂x̄ + α̂

we can write the second term on right as
∑

i(ŷi − ȳ)2 and we have∑
i

(yi − ȳ)2 =
∑

i

(yi − ŷi)
2 +

∑
i

(ŷi − ȳ)2.
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Decomposition of the total variation

We usually write
SStot = SSres + SSreg ,

and it means that total variation was decomposed into residual
variation and variation due to regression. It should be rather obvious
that the ratio

SSreg

SSost

will be small if the null hypothesis, that β = 0, holds.
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Testing the null hypothesis - again

What is small and what is large (meaning that it goes against the null
hypothesis) is a question to which a theory has the answer. And the
theory says that the ratio

F =
SSreg/1

SSost/(n − 2)
(1)

has a F distribution with 1 and n − 2 degrees of freedom. The p value
is then

p value = P(F(1,n − 2) ≥ F )

We will reject the null hypothesis when the variation due to regression
will be large compared to the variation of the residuals.
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Testing the null hypothesis - again

Results are usually presented in the so called analysis of variance
table (ANOVA).

Source df SS MS F Significance
Regression 1 SSreg SSreg/1 F p
Residuals n − 2 SSres SSres/(n − 2)

Total n − 1 SStot

Primer: Treadmill test

Source df SS MS F Significance
Regression 1 3843.5 3843.5 134.40 1.613e-15
Residuals 48 1372.7 28.6

Total 49 5216.2
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A measure of explained variation in linear regression

We had ∑
i

(yi − ȳ)2 =
∑

i

(yi − ŷi)
2 +

∑
i

(ŷi − ȳ)2.

The statistics

R2 =

∑
i(yi − ŷi)

2∑
i(yi − ȳ)2 =

SSreg

SStotl
,

is then a proportion of the total variation explained by the model.
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Example: Treadmill test-cont

R2 is 0,737, meaning that approximately 74% of the variation in
oxygen consumption was explained by duration of the test.

The next 4 slides illustrate the meaning of R2

Stare (SLO) Linear Regression 42 / 49



We know this about Y if we know nothing about X
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We know this about Y , if knowing X doesn’t change
anything
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We know this about Y , if there is a perfect correlation
with X
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And we know this about Y , if knowing X tells
something about Y
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Multiple linear regression - just a few lines

Often we want to have more than one independent variable. A natural
extension of the bivariate regression model is

Y = α + β1X1 + β2X2 + · · ·+ βkXk + ε,

where again the ‘the error’ ε represents random variation around the
hyper plane.
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Multiple linear regression - just a few lines

All the assumptions remain the same, and the method of estimation
also does not change (except that we now have a larger system of
equations to solve).

An unbiased estimator of the variance of the error term is given by

σ̂2 =

∑
i(yi − ŷi)

2

n − k − 1
=

SSRes

n − k − 1

Stare (SLO) Linear Regression 48 / 49



Multiple linear regression - just a few lines

Interpretation of coefficients in the model is the same as in bivariate
case.

But there is a difference regarding the null hypothesis. We can now
look at different null hypotheses.

Y = α + β1X1 + β2X2 + · · ·+ βkXk + ε,

Y = α + β1X1 + β2X2 + · · ·+ βkXk + ε,

Y = α + β1X1 + β2X2 + · · ·+ βk−1Xk + βkXk + ε,
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